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Human-caused greenhouse gases are increasing 
in the atmosphere and warming the planet

Synthesis Report (SYR) of the IPCC Fifth Assessment Report (AR5) 2014 



Land management can be both a source and 
sink of GHGs

IPCC Fifth Assessment Report (AR5) 2013 



C sequestration potential varies by ecosystem

Calculated from data for Western Cordillera, USA, reported in Chapter 5, Zhu, Zhiliang, and Reed, B.C., eds., 2012, Baseline and projected 
future carbon storage and greenhouse-gas fluxes in ecosystems of the Western United States: U.S. Geological Survey Professional Paper 
1797, 192 p.



Low C Losses

• Respiration
• Leaching

High C Inputs

Above & 
belowground 
vegetation

Soil Carbon



Disconnected 
floodplain 
hydrology

Vegetation 
composition & 

biomass

Soil 
biogeochemistry 

& nutrient 
cycling



How does restoration of floodplain 
hydrology alter C sequestration in 

mountain meadows?



General Research Design

• Comparison of pre- and post-restoration C 
stocks and fluxes

• Mass balance approach to estimate total 
belowground C allocation

• Total C sequestered as a result of restoration

BUT to measure the impact of restoration, 

we need to understand and quantify C 
dynamics in degraded meadows



What is the annual net C budget of 
Sierra Nevada meadows in their 

pre-restoration condition? 

Are they net sinks or sources of C to 
the atmosphere?



Decreased C Inputs Increased C Losses

Loss of Soil Carbon



Meadow Biogeochemistry:
the carbon story
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Meadows are not farmland or 
wetlands

• Seasonally dynamic hydrology & low temps

– Temperature and redox controls on microbial activity

– Plant community composition & productivity

• Dominance of herbaceous OBL + FACW species

– Large root biomass and belowground C inputs

• High mineral soil content 

– Increase C stability through absorption and adsorption 
processes

– Alternative electron acceptors impact rates of C 
mineralization under changing redox conditions



Annual Soil GHG Budget

In CO2 equivalents



13 meadows across Sierra Nevada
Continuous levels of degradation
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Annual Net △ Soil C 

= Gross C Inputs – Gross C Outputs



C
OO

Litter

Exudates
Dead Roots

Gross Inputs = C inputs from litter + C inputs from roots 
C inputs from litter = Senescent biomass x %C x k
C inputs from roots = 

(Root biomass x Root turnover rate x %C x k) + 
Root Exudates

Inputs



Litter

Root Biomass



Problem
• BUT roots are not just passive stocks
• Actively release root exudates 
• Important for ecosystem function
• Just measuring litter and root biomass ignores root 

exudates
• Changes in soil C pool size hard to capture with short-

term experiments

Solution
• 𝛿13C pulse-labeling experiment
• Track flow of labeled C through plants, into the soil and 

back to the atmosphere
• Quantitative measure of rate of root exudation
• Separate microbial respiration from root and shoot 

respiration



𝛿13C Pulse-chase Experiment

3 meadows
5 plots 

• 3 labeled
• 2 natural abundance

300 mL 95 atom% 13C – CO2

Sampled 4, 24, 96, 336h after 
labeling
• Vegetation biomass
• Root biomass
• Soil
• CO2 flux

Analyzed for %C and 12C/13C
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Sites stratified by elevation & 
representatives of each sampled



Respiration C
OO

C
OO

Respiration

Gross Outputs = Microbial respiration + Leaching +CH4 Flux
Microbial respiration = 

Total respiration – Root respiration – Shoot respiration
Leaching
CH4 Efflux

C
HH

HH

Outputs



Total Respiration
• Shoot Respiration
• Root Respiration
• Microbial Respiration

CH4 Flux

Leaching (literature estimates)

𝛿13C pulse-labeling



C
OO

Biomass
Litter

Respiration C
OO

C
OO

Respiration

Exudates

Soil Carbon

C
HH

HH

Root Turnover



Net Carbon Change
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Switch from C sink to source driven by 
C inputs not outputs
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Degraded meadows still have a lot of 
belowground C
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Annual C gains/losses substantial fraction of 
belowground C stocks
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What explains variation in the magnitude of C 
losses from degraded meadows?



Level of Degradation?

% cover OBL + FACW species
% cover bare ground



Climate?

Mean annual temperature
Mean annual precipitation



Watershed Characteristics?

Upland accumulated area
Watershed relief
% forest in uplands



MAP

Net C 
Loss
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Functioning meadows sequester C

Net soil C gains 

(mean 3 Sierra Nevada meadows)

6.1 Mg C ha-1 y-1

=

Carbon sequestered by 

10.8 ha temperate forest y-1



Degraded meadows are losing C

Net soil C losses 

(mean 9 Sierra Nevada meadows)

-3.9 Mg C ha-1 y-1

=

Carbon sequestered by 

6.9 ha temperate forest y-1



Pre-disturbance condition across 
the Sierra Nevada

Scaled across entire Sierra Nevada 
(~130,000 ha)

=

814 Gg C y-1

=

Carbon sequestered by 

1.4 M ha temperate forest y-1



Current Condition

Scaled across all degraded meadows in  

Sierra Nevada (~90,000 ha)

=

351 Gg C y-1

=

Carbon sequestered by 

607,000 ha temperate forest y-1



Take Home Messages

• Stemming C losses from degraded 
meadows may be as important as 
sequestering new C

• Restoring ”at-risk” meadows may prevent 
them from crossing the threshold

• Identifying and preserving functioning 
meadows should be a priority



Questions?

Contact Info: creed@cabnr.unr.edu
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Root contribution to CO2 flux

y = 0.0004x + 3.2038
R² = 0.0252
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y = -0.0031x + 29.406
R² = 0.0431
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y = 0.0008x + 3.239
R² = 0.0246
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FINE Root contribution to CO2 flux

y = -0.0033x + 25.633
R² = 0.0109
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y = -0.007x + 30.488
R² = 0.1032
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Veg Contribution CO2 Flux = (CO2 (with veg) – CO2 (no veg))/CO2 (with veg) * 100
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